
CSE 451: Operating Systems

Winter 2013

Threads

Gary Kimura

2

What is in a process?

• Historically a process consists of (at least):
– an address space

– the code for the running program

– the data for the running program

– at least one thread

• Registers, IP

• Floating point state and other hardware state

• Stack and stack pointer

– a set of OS resources

• open files, network connections, sound channels, …

• That is a lot of concepts bundled together!

• Current consensus is to separate out its execution state

– threads of control

– (other resources…)

3

Concurrency

• Imagine a web server, which might like to handle multiple
requests concurrently

– While waiting for the credit card server to approve a purchase for
one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client from
cached information

• Imagine a web client (browser), which might like to initiate
multiple requests concurrently

– The CSE home page has 46+ “src= …” html commands, each of
which is going to involve a lot of sitting around! Wouldn’t it be nice
to be able to launch these requests concurrently?

• Imagine a parallel program running on a multiprocessor, which
might like to employ “physical concurrency”

– For example, multiplying a large matrix – split the output matrix into
k regions and compute the entries in each region concurrently
using k processors

4

What is needed?

• In each of these examples of concurrency (web

server, web client, parallel program):

– Everybody wants to run the same code

– Everybody wants to access the same data

– Everybody has the same privileges

– Everybody uses the same resources (open files, network

connections, etc.)

• But you’d like to have multiple hardware execution

states:

– an execution stack and stack pointer (SP)

• traces state of procedure calls made

– the program counter (PC), indicating the next instruction

– a set of general-purpose processor registers and their values

5

How could we achieve this?

• Given the process abstraction as we know it:

– create several processes

– cause each to map to the same physical memory to share data

• see the MapViewOfFile() system call for one way to do this (kind

of); use mmap() on LINUX/UNIX

• This is like making a pig fly – it is really inefficient

– space: _KPROCESS, page tables, etc.

– time: creating OS structures, initializing addr space, etc.

• Some equally bad alternatives for some of the examples:

– Entirely separate web servers

– Manually programmed asynchronous programming (non-blocking

I/O) in the web client (browser)

6

Can we do better?

• Key idea:

– separate the concept of a process (address space, etc.)

– …from that of a minimal “thread of control” (execution state:

PC, etc.)

• This execution state is usually called a thread, or

sometimes, a lightweight process

7

States of a thread

running

ready

blocked

exception

interrupt dispatch

interrupt

8

Threads and processes

• Most modern OS’s (VMS, Mach, Chorus, Windows,
modern UNIX) therefore support two entities:
– the process, which defines the address space and general

process attributes (such as open files, etc.)

– the thread, which defines a sequential execution stream within a
process

• A thread is bound to a single process / address space
– address spaces, however, can have multiple threads executing

within them

– sharing data between threads is cheap: all see the same
address space

– creating threads is cheap too!

• Threads become the unit of scheduling
– processes / address spaces are just containers in which threads

execute

9

The design space

address

space

thread

one thread/process

many processes

many threads/process

many processes

one thread/process

one process

many threads/process

one process

MS/DOS

Java

older

UNIXes

Mach,

WINDOWS,

UNIX, …

Key

10

(old) Process address space

0x00000000

0x7FFFFFFF

address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

stack

(dynamic allocated mem)

PC

SP

11

(new) Process address space with threads

0x00000000

0x7FFFFFFF

address space

code

(text segment)

static data

(data segment)

heap

(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)

thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)

PC (T3)

12

Process/thread separation

• Concurrency (multithreading) is useful for:

– handling concurrent events (e.g., web servers and clients)

– building parallel programs (e.g., matrix multiply, ray tracing)

– improving program structure (the Java argument)

• Multithreading is useful even on a uniprocessor

– even though only one thread can run at a time

• Supporting multithreading – that is, separating the

concept of a process (address space, files, etc.) from

that of a minimal thread of control (execution state),

is a big win

– creating concurrency does not require creating new

processes

– “faster / better / cheaper”

13

“Where do threads come from?”

• Natural answer: the kernel is responsible for

creating/managing threads

– for example, the kernel call to create a new thread would

• allocate an execution stack within the process address space

• create and initialize a Thread Control Block

– stack pointer, program counter, register values

• stick it on the ready queue

• See CreateThread()

– we call these kernel threads

14

• Threads can also be managed at the user level (that

is, entirely from within the process)

– a library linked into the program manages the threads

• because threads share the same address space, the thread

manager doesn’t need to manipulate address spaces (which

only the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP,

registers), which can be manipulated by user-level code

• the LINUX thread package multiplexes user-level threads on

top of kernel thread(s), which it treats as “virtual processors”

– we call these user-level threads

“Where do threads come from?” (2)

15

Kernel threads

• OS now manages threads and processes
– all thread operations are implemented in the kernel

– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g., on I/O), the OS knows
about it, and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
(e.g., orders of magnitude more expensive than a
procedure call)
– thread operations are all system calls

• context switch

• argument checks

– must maintain kernel state for each thread

16

User-level threads

• To make threads cheap and fast, they need to be

implemented at the user level

– managed entirely by user-level library, e.g., libpthreads.a

• User-level threads are small and fast

– each thread is represented simply by a PC, registers, a stack,

and a small thread control block (user-space _KTHREAD)

– creating a thread, switching between threads, and

synchronizing threads are done via procedure calls

• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than kernel

threads as a result

17

The design space

address

space

thread

one thread/process

many processes

many threads/process

many processes

one thread/process

one process

many threads/process

one process

MS/DOS

Java

older

UNIXes

Mach, NT,

Chorus,

Linux, …

18

address

space

thread

VMS, Mach, NT,

Chorus,

LINUX, …

os kernel

(thread create, destroy,

signal, wait, etc.)

CPU

Kernel threads

19

address

space

thread

VMS, Mach, NT,

Chorus,

LINUX, …

os kernel

CPU

User-level threads, conceptually

user-level

thread library

(thread create, destroy,

signal, wait, etc.)

?

20

address

space

thread

VMS, Mach, NT,

Chorus,

LINUX, …

os kernel

(kernel thread create, destroy,

signal, wait, etc.)

CPU

User-level threads, really

user-level

thread library

(thread create, destroy,

signal, wait, etc.)

kernel threads

21

address

space

thread

VMS, Mach, NT,

Chorus,

LINUX, …

os kernel

user-level

thread library

(thread create, destroy,

signal, wait, etc.)

(kernel thread create, destroy,

signal, wait, etc.)

CPU

Multiple kernel threads “powering”

each address space

kernel threads

22

User-level thread implementation

• The kernel believes the user-level process is just a

normal process running code

– But, this code includes the thread support library and its

associated thread scheduler

• The thread scheduler determines when a thread runs

– it uses queues to keep track of what threads are doing: run,

ready, wait

• just like the OS and processes

• but, implemented at user-level as a library

23

Thread interface

• This is taken from the POSIX pthreads API:

– t = pthread_create(attributes, start_procedure)

• creates a new thread of control

• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable)

• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)

• starts the thread waiting on the condition variable

– pthread_exit()

• terminates the calling thread

– pthread_wait(t)

• waits for the named thread to terminate

24

• Strategy 1: force everyone to cooperate
– a thread willingly gives up the CPU by calling yield()

– yield() calls into the scheduler, which context switches to
another ready thread

– what happens if a thread never calls yield()?

• Strategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the

OS periodically
• usually delivered as a UNIX signal (man signal)

• signals are just like software interrupts, but delivered to user-
level by the OS instead of delivered to OS by hardware

– at each timer interrupt, scheduler gains control and context
switches as appropriate

How to keep a user-level thread from

hogging the CPU?

25

Thread context switch

• Very simple for user-level threads:

– save context of currently running thread

• push machine state onto thread stack

– restore context of the next thread

• pop machine state from next thread’s stack

– return as the new thread

• execution resumes at PC of next thread

• This is all done by assembly language

– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

• e.g., a thread might be preempted (and then resumed) in the

middle of a procedure call

26

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration

of the (synchronous) I/O operation!

• Could have one kernel thread “powering” each user-

level thread

– no real difference from kernel threads – “common case”

operations (e.g., synchronization) would be quick

• Could have a limited-size “pool” of kernel threads

“powering” all the user-level threads in the address

space

– the kernel will be scheduling these threads, obliviously to

what’s going on at user-level

27

What if the kernel preempts a thread

holding a lock?

• Other threads will be unable to enter the critical

section and will block (stall)

– tradeoff, as with everything else

• Solving this requires coordination between the kernel

and the user-level thread manager

– “scheduler activations”

• each process can request one or more kernel threads

– process is given responsibility for mapping user-level threads onto

kernel threads

– kernel promises to notify user-level before it suspends or destroys

a kernel thread

28

Summary

• You really want multiple threads per address space

• Kernel threads are much more efficient than

processes, but they’re still not cheap

– all operations require a kernel call and parameter verification

• User-level threads are:

– fast

– great for common-case operations

• creation, synchronization, destruction

– can suffer in uncommon cases due to kernel obliviousness

• I/O

• preemption of a lock-holder

• Scheduler activations are the answer

– pretty subtle though

