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What is in a process? 

• Historically a process consists of (at least): 
– an address space 

– the code for the running program 

– the data for the running program 

– at least one thread 

• Registers, IP 

• Floating point state and other hardware state 

• Stack and stack pointer 

– a set of OS resources 

• open files, network connections, sound channels, … 

• That is a lot of concepts bundled together! 

• Current consensus is to separate out its execution state  

– threads of control 

– (other resources…) 
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Concurrency 

• Imagine a web server, which might like to handle multiple 
requests concurrently 

– While waiting for the credit card server to approve a purchase for 
one client, it could be retrieving the data requested by another 
client from disk, and assembling the response for a third client from 
cached information 

• Imagine a web client (browser), which might like to initiate 
multiple requests concurrently 

– The CSE home page has 46+ “src= …” html commands, each of 
which is going to involve a lot of sitting around!  Wouldn’t it be nice 
to be able to launch these requests concurrently? 

• Imagine a parallel program running on a multiprocessor, which 
might like to employ “physical concurrency” 

– For example, multiplying a large matrix – split the output matrix into 
k regions and compute the entries in each region concurrently 
using k processors 
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What is needed? 

• In each of these examples of concurrency (web 

server, web client, parallel program): 

– Everybody wants to run the same code 

– Everybody wants to access the same data 

– Everybody has the same privileges 

– Everybody uses the same resources (open files, network 

connections, etc.) 

• But you’d like to have multiple hardware execution 

states: 

– an execution stack and stack pointer (SP) 

• traces state of procedure calls made 

– the program counter (PC), indicating the next instruction 

– a set of general-purpose processor registers and their values 
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How could we achieve this? 

• Given the process abstraction as we know it: 

– create several processes 

– cause each to map to the same physical memory to share data 

• see the MapViewOfFile() system call for one way to do this (kind 

of); use mmap() on LINUX/UNIX 

• This is like making a pig fly – it is really inefficient 

– space:  _KPROCESS, page tables, etc. 

– time: creating OS structures, initializing addr space, etc. 

• Some equally bad alternatives for some of the examples: 

– Entirely separate web servers 

– Manually programmed asynchronous programming (non-blocking 

I/O) in the web client (browser) 
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Can we do better? 

• Key idea: 

– separate the concept of a process (address space, etc.) 

– …from that of a minimal “thread of control” (execution state:  

PC, etc.) 

• This execution state is usually called a thread, or 

sometimes, a lightweight process 
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States of a thread 

running 

ready 

blocked 

exception 

interrupt dispatch 

interrupt 
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Threads and processes 

• Most modern OS’s (VMS, Mach, Chorus, Windows, 
modern UNIX) therefore support two entities: 
– the process, which defines the address space and general 

process attributes (such as open files, etc.) 

– the thread, which defines a sequential execution stream within a 
process 

• A thread is bound to a single process / address space 
– address spaces, however, can have multiple threads executing 

within them 

– sharing data between threads is cheap: all see the same 
address space 

– creating threads is cheap too! 

• Threads become the unit of scheduling 
– processes / address spaces are just containers in which threads 

execute 
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(old) Process address space 
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(new) Process address space with threads 
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Process/thread separation 

• Concurrency (multithreading) is useful for: 

– handling concurrent events (e.g., web servers and clients) 

– building parallel programs (e.g., matrix multiply, ray tracing) 

– improving program structure (the Java argument) 

• Multithreading is useful even on a uniprocessor 

– even though only one thread can run at a time 

• Supporting multithreading – that is, separating the 

concept of a process (address space, files, etc.) from 

that of a minimal thread of control (execution state), 

is a big win 

– creating concurrency does not require creating new 

processes 

– “faster / better / cheaper” 
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“Where do threads come from?” 

• Natural answer:  the kernel is responsible for 

creating/managing threads 

– for example, the kernel call to create a new thread would 

• allocate an execution stack within the process address space 

• create and initialize a Thread Control Block 

– stack pointer, program counter, register values 

• stick it on the ready queue 

• See CreateThread() 

– we call these kernel threads 
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• Threads can also be managed at the user level (that 

is, entirely from within the process) 

– a library linked into the program manages the threads 

• because threads share the same address space, the thread 

manager doesn’t need to manipulate address spaces (which 

only the kernel can do) 

• threads differ (roughly) only in hardware contexts (PC, SP, 

registers), which can be manipulated by user-level code 

• the LINUX thread package multiplexes user-level threads on 

top of kernel thread(s), which it treats as “virtual processors” 

– we call these user-level threads 

“Where do threads come from?” (2) 
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Kernel threads 

• OS now manages threads and processes 
– all thread operations are implemented in the kernel 

– OS schedules all of the threads in a system 

• if one thread in a process blocks (e.g., on I/O), the OS knows 
about it, and can run other threads from that process 

• possible to overlap I/O and computation inside a process 

• Kernel threads are cheaper than processes 
– less state to allocate and initialize 

• But, they’re still pretty expensive for fine-grained use 
(e.g., orders of magnitude more expensive than a 
procedure call) 
– thread operations are all system calls 

• context switch 

• argument checks 

– must maintain kernel state for each thread 
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User-level threads 

• To make threads cheap and fast, they need to be 

implemented at the user level 

– managed entirely by user-level library, e.g., libpthreads.a 

• User-level threads are small and fast 

– each thread is represented simply by a PC, registers, a stack, 

and a small thread control block (user-space _KTHREAD) 

– creating a thread, switching between threads, and 

synchronizing threads are done via procedure calls 

• no kernel involvement is necessary! 

– user-level thread operations can be 10-100x faster than kernel 

threads as a result 



17 

The design space 

address 

space 

thread 

one thread/process 

many processes 

many threads/process 

many processes 

one thread/process 

one process 

many threads/process 

one process 

MS/DOS 

Java 

older 

UNIXes 

Mach, NT, 

Chorus, 

Linux, … 



18 

address 

space 

thread 

VMS, Mach, NT, 

Chorus, 

LINUX, … 

os kernel 

(thread create, destroy, 

signal, wait, etc.) 

CPU 

Kernel threads 



19 

address 

space 

thread 

VMS, Mach, NT, 

Chorus, 

LINUX, … 

os kernel 

CPU 

User-level threads, conceptually 

user-level 

thread library 

(thread create, destroy, 

signal, wait, etc.) 

? 



20 

address 

space 

thread 

VMS, Mach, NT, 

Chorus, 

LINUX, … 

os kernel 

(kernel thread create, destroy, 

signal, wait, etc.) 

CPU 

User-level threads, really 

user-level 

thread library 

(thread create, destroy, 

signal, wait, etc.) 

kernel threads 



21 

address 

space 

thread 

VMS, Mach, NT, 

Chorus, 

LINUX, … 

os kernel 

user-level 

thread library 

(thread create, destroy, 

signal, wait, etc.) 

(kernel thread create, destroy, 

signal, wait, etc.) 

CPU 

Multiple kernel threads “powering” 

each address space 

kernel threads 



22 

User-level thread implementation 

• The kernel believes the user-level process is just a 

normal process running code 

– But, this code includes the thread support library and its 

associated thread scheduler 

• The thread scheduler determines when a thread runs 

– it uses queues to keep track of what threads are doing:  run, 

ready, wait 

• just like the OS and processes 

• but, implemented at user-level as a library 
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Thread interface 

• This is taken from the POSIX pthreads API: 

– t = pthread_create(attributes, start_procedure) 

• creates a new thread of control 

• new thread begins executing at start_procedure 

– pthread_cond_wait(condition_variable) 

• the calling thread blocks, sometimes called thread_block() 

– pthread_signal(condition_variable) 

• starts the thread waiting on the condition variable 

– pthread_exit() 

• terminates the calling thread 

– pthread_wait(t) 

• waits for the named thread to terminate 
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• Strategy 1: force everyone to cooperate 
– a thread willingly gives up the CPU by calling yield() 

– yield() calls into the scheduler, which context switches to 
another ready thread 

– what happens if a thread never calls yield()? 

 

• Strategy 2: use preemption 
– scheduler requests that a timer interrupt be delivered by the 

OS periodically 
• usually delivered as a UNIX signal (man signal) 

• signals are just like software interrupts, but delivered to user-
level by the OS instead of delivered to OS by hardware 

– at each timer interrupt, scheduler gains control and context 
switches as appropriate 

How to keep a user-level thread from 

hogging the CPU? 
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Thread context switch 

• Very simple for user-level threads: 

– save context of currently running thread 

• push machine state onto thread stack 

– restore context of the next thread 

• pop machine state from next thread’s stack 

– return as the new thread 

• execution resumes at PC of next thread 

• This is all done by assembly language 

– it works at the level of the procedure calling convention 

• thus, it cannot be implemented using procedure calls 

• e.g., a thread might be preempted (and then resumed) in the 

middle of a procedure call 
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What if a thread tries to do I/O? 

• The kernel thread “powering” it is lost for the duration 

of the (synchronous) I/O operation! 

• Could have one kernel thread “powering” each user-

level thread 

– no real difference from kernel threads – “common case” 

operations (e.g., synchronization) would be quick 

• Could have a limited-size “pool” of kernel threads 

“powering” all the user-level threads in the address 

space 

– the kernel will be scheduling these threads, obliviously to 

what’s going on at user-level 
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What if the kernel preempts a thread 

holding a lock? 

• Other threads will be unable to enter the critical 

section and will block (stall) 

– tradeoff, as with everything else 

• Solving this requires coordination between the kernel 

and the user-level thread manager 

– “scheduler activations” 

• each process can request one or more kernel threads 

– process is given responsibility for mapping user-level threads onto 

kernel threads 

– kernel promises to notify user-level before it suspends or destroys 

a kernel thread 
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Summary 

• You really want multiple threads per address space 

• Kernel threads are much more efficient than 

processes, but they’re still not cheap 

– all operations require a kernel call and parameter verification 

• User-level threads are: 

– fast 

– great for common-case operations 

• creation, synchronization, destruction 

– can suffer in uncommon cases due to kernel obliviousness 

• I/O 

• preemption of a lock-holder 

• Scheduler activations are the answer 

– pretty subtle though 

 


